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1. Research Aim 

This project mainly focuses on realization of numerical estimation on wind-induced vibration of 

membrane structures considering solid-fluid interaction with equivalent effect of air flow around 

membrane units in FE analysis. In FY2013, the main work is to establish numerical simulation 

framework for added mass estimation and to verify the suitability and efficiency of the proposed model 

by comparing between the added mass obtained from tests and numerical analysis. Some BLWT test 

will be conducted in FY2014. 

2. Research Method 

For numerical simulation, a singularity distribution method of distributing diploes on interfaces between 

fluid and structure will be developed to solve the problem of fluid flow induced by vibration of 

structures, and then the added mass can be expressed with the intensities of doublets, as well as the 

kinetic energy of the air flow around the curved membranes. Comparison between the added mass 

obtained from tests and numerical analysis will be done to verify the suitability and efficiency of the 

proposed model. 

3. Research Result 

3.1 Numerical analysis framework of still air induced by open flat membrane 

A light open membrane structure of any shape in still air is considered. The membrane during vibration 

will induce the motion of surrounding air, and the air becomes a source of the additional inertia forces, 

as the same as the contribution of the structural mass. It is assumed that the air is incompressible and 

inviscid, and the velocity potential of the air satisfies the Laplace equation, i.e., 

2 2 2

2 2 2
0

x y z

  
  

  

φ φ φ  (1) 

where φ is the velocity potential of the air. 

  The solution of this equitation in integral form is  
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where, φQ is the velocity potential of the air at point Q on the surface, φP is the velocity potential in any 

point of the space, rPQ is the distance between any point P and a point Q on the surface (as Fig.1 shown),  

and 
P

P
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 is the air velocity normal to the surface at the point P. 

The boundary condition on the surface S is of Neumann's type and it is a coupling condition between the 

structure and the air. The formulations of the aerodynamic pressure and acceleration of the air are 
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where   is the air density. 

 

Fig.1 A light open membrane structure 

Differentiating Eq.(2) with respect to time and using to Eq.(3) yields  
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where pnQ is the resultant aerodynamic pressure acting at the point Q. 

The BEM is used to numerically solve the boundary integral equation, Eq.(4). The surface of the 

membrane structure is discretized using the triangular elements. The boundary element discretization of 

Eq.(4) results in the following  

4 n n a Ap  (5) 

Here, the matrix A, a N×N complex matrix (N is the number of triangular elements) is  
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The kernel of the integral has a strong singularity of the r-3 order, when the point Q approaches the point 

P (rPQ→0). For this case the integral cannot be directly determined. It can construct a set of related 

functions and use the Stokes formula to convert to the curvilinear integral on the edge of the surface. In 

this way，both the computational efficiency and accuracy are improved greatly. 

The differentiation in Eq.(6) can be perform in the following form 
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As shown in Fig.2, the local coordinate system of the element P is defined by (ξ, η, ζ). The direction of 

the unit axis vectors ζ is the unit normal vector of the element P. It can be derived as follow: 

 

Fig.2 Local coordinate system of element P 
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Denoting the function M(ξ, η, ζ), N(ξ, η, ζ), and R(ξ, η, ζ) as following  
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and the relationships of the function P, Q, R and the potential function of the flow field are  
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According to the Stokes formula,  
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Since the membrane is divided by triangle elements, so 
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Substitute Eq.(13) into Eq.(12), the curvilinear integral on the edge γ1 can be derived as 
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where  
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Noting  T1111 r ,  T2222 r ,   T1003 r , Eq.(15) can be rewritten as  

32112 )()( rrrrr C , )()( 1212 rrrr a , )()( 1221 rrrr b , )()( 1212 rrrr c  (16) 

According to the invariance of the vector dot product and mixed product, we can use r1-rj and r2-rj 

substitute into r1 and r2 in the global coordinate system, and Eq.(16) can be rewritten as  
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The curvilinear integral on the edge γ1 , γ2 and γ3 can be derived in the same way, the elements APQ of the 

matrix A in Eq.(6) are given by 
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The resultant aerodynamic forces Pn acting at the centre of the ith element can be calculated as 

inini SpP  , where Si is the area of the ith element. The relationship between the aerodynamic forces P 

acting on the nodes and the resultant aerodynamic forces Pn acting at the centre of the elements can be 

determined by 
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where, Prj is the rth component of force at node j, Nji is the jth interpolation function at point i, nri is the 

rth component of the unit normal vector ni.  

For the total system 

nTPP   (20) 

where T denotes the transformation matrix. 

The relationship between the acceleration of nodes a in the global coordinate system and the 

acceleration at the centre of the elements an is as follows:  
T

n a T a  (21) 

(1) Determination of added mass according to effect of the geometric shape  

Using the Eq.(6), (20) and (21), we can get 

naaMP   (22) 

where the added mass matrix 14 - T

a  M TSA T . 

The structural dynamic matrix equation can be obtained by means of FEM. The discretized equation of 

vibrations of the structure accounting for the aerodynamic forces is given by 

s s s  K u C u M u P  (23) 

where Ks and Ms are the stiffness and mass metrics of the structure.  

The equation of motion of an undamped dynamic system in matrix notation is  

( ) 0s s a  K u M M u  (24) 

In this method, the added mass is determined only by the membrane geometric shape, not the mode 

shape. 

(2) Determination of added mass according to effect of the geometric shape and the mode shape 

According to vibration theory, the structural vibration displacement can be separated into a modal vector 

and a set of generalized coordinates, i.e., the structural vibration displacement induced by the kth natural 

vibration can be expressed as 
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where 
( )kψ is the kth modal vector and )(t is a function of time. 

The structural vibration velocity and acceleration induced by the kth natural vibration can be expressed 

as 
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And the resultant aerodynamic forces acting on the structure induced by the kth natural vibration can be 

expressed as                                  
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In the case of an incompressible inviscid stationary fluid, the change rate in time of kinetic energy of 

any part of the fluid is equal to the work done by the pressures on its surface.  
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where, E is the kinetic energy, and vn denotes the velocity of the fluid particle in the direction of the 

normal n. Assuming the fluid-solid interface of the membrane can be expressed as 
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where, th  /  is the velocity of the membrane in the normal direction, h is the surface displacement 

of the membrane structure. 

The change rate in time of the kth flow field kinetic energy induced by the kth natural vibration can be 

expressed as 
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where n is the normal direction of element. 

On the other hand, the change rate in time of kinetic energy of the oscillating open membrane can be 

taken as the contribution of a equivalent mass per unit area, or the added mass, Ma, as described by 
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For the kth natural vibration, Eq.(31) can be given 
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So an expression for the added mass per unit area induced by the kth natural vibration can be given in 

the following form: 
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(33) 

In this method, the added mass is determined by the membrane geometric shape, as well as the mode 

shape. 

3.2 Analysis of added mass of circular membrane 

A special vacuum chamber was designed by Li, et al (2011) to investigate the vibration of a circular flat 

membrane in still air with various air pressures. The membrane was clipped by a top circle and a bottom 

circle, and different prestress levels inside the membrane were imposed uniformly by lifting an inner 

circle. The vibration of the membrane was measured in 4 levels of air pressures, i.e., 1atm, 0.8atm, 

0.6atm, and 0.35atm. Two membrane materials were used in the tests, including a latex and a rubber 

membrane, and five levels of prestress in the membrane were tested. Table 1 shows the test cases. 

Apparently, the natural frequencies of the membrane increase as air pressure decreases, as given in Table 

2. Due to the arrangement of the displacement measuring points, the 3rd vibration mode of the latex 

membrane and the 4th vibration mode of the rubber membrane were lost. The fundamental frequency in 

vacuum was estimated by FEM, as listed in Table 3. With the obvious difference among the natural 

frequencies of the circular membrane vibrating in various air pressures and in vacuum, it can be seen 

that the added mass has a significant influence on the natural frequency of membrane structures. 

The natural frequencies of the membrane considering the added masses are listed in Table 4. It can be 

seen that the result of the added mass model by Eq.(22) shows better agreement with the test results in 

the 1st mode, however, the error between the test results and the results with the added mass by Eq.(22) 

increases as the vibration mode increases. Generally speaking, the results with the added mass estimated 

by Eq.(33) are better agreement with the test results from 1st mode to 6th mode. Since the mass of the 

circle membrane is uniform, the mode shapes of the membrane vibrating in vacuum and with the added 

mass estimated by Eq.(33) are fully identical. In Fig.3, the difference of membrane mode shapes 

vibrating in vacuum and that with the added mass estimated by Eq.(22) is plotted together along the 

diameter. It is shown that the mode shapes with the added mass estimated by Eq.(22) has few changes.  

Table 1 Test cases 

Air pressure 
Latex membrane Rubber membrane 

σ1=0.092 σ2=0.178 σ3=0.297 σ4=0.471 σ5=0.828 

1 atm A1 B1 C1 D1 E1 

0.8 atm A2 B2 C2 D2 E2 

0.6 atm A3 B3 C3 D3 E3 

0.35 atm A4 B4 C4 D4 E4 



Table 2 Natural frequency of the circular membrane vibrating in air with various pressures 

Case 

1st 

mode 

2nd 

mode 

3rd 

mode 

4th 

mode Case 

1st 

mode 

2nd 

mode 

3rd 

mode 

4th 

mode 

f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) 

A1 11.05 23.11 - 33.55 C3 24.34 49.31 - 78.91 

A2 11.48 23.60 - 37.57 C4 30.96 58.95 - 92.00 

A3 12.25 24.51 - 39.74 D1 35.58 67.42 97.38 - 

A4 16.75 29.21 - 45.72 D2 36.83 69.91 99.25 - 

B1 15.46 32.60 - 47.63 D3 39.95 73.04 - - 

B2 16.62 33.39 - 54.56 D4 45.57 78.65 107.4 - 

B3 18.10 35.86 - 57.70 E1 51.20 97.38 151.1 - 

B4 24.29 42.26 - 65.78 E2 51.81 97.69 - - 

C1 21.22 44.63 - 71.47 E3 53.99 102.4 - - 

C2 24.00 46.99 - 75.21 E4 63.98 111.7 - - 

 

Table 3 Natural frequencies of the circular membrane vibrating in vacuum 

Prestress 

(MPa) 

Finite Element Analysis Fitting result of test 
 1st 

mode 

2nd and 3rd   

mode 

4th and 

5th  

mode 

6th  

mode 

1st 

mode 

2nd and 

3rd   

mode 

4th and 

5th 

mode 

6th  

mode 

σ1=0.092 24.45 39.08 52.48 56.43 24.45 33.38 - 61.96 

σ2=0.178 34.00 54.36 73.00 78.50 34.00 50.97 - 92.92 

σ3=0.297 43.98 70.02 82.50 101.39 43.98 72.18 - 110.18 

σ4=0.471 55.43 88.42 118.75 127.69 55.43 87.13 114.24 - 

σ5=0.828 73.49 117.24 157.45 169.30 73.51 121.13 - - 
 

Table 4 Natural frequencies of the circular membrane considering the added masses 

Case 

by Eq.(33)  by Eq.(22) 
 1st  2nd& 3rd 4th &5th  6th   1st  2nd &3rd  4th&5th  6th 

f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) 

A1 12.76 24.44 35.97 39.16 12.151 19.90 27.21 28.675 

A2 13.81 26.08 38.05 41.36 13.186 21.568 29.455 31.073 

A3 15.16 28.10 40.53 43.99 14.541 23.735  32.365  34.194 

A4 17.59 31.44 44.44 48.09 17.019  27.653 37.595 39.848 

B1 17.76 33.99 50.04 54.47 16.901 27.686 37.849  39.886  

B2 19.21 36.28 52.92 57.54 18.342 30.001  40.971 43.221 

B3 21.09 39.09 56.37 61.18 20.226 33.013 45.019 47.562 

B4 24.47 43.73 61.81 66.90 20.226  33.013 45.019  47.562  

C1 22.93 43.91 64.64 70.36 21.832  35.763  48.890  51.522  

C2 24.81 46.86 68.36 74.32 23.692 38.753 52.923  55.829  

C3 27.25 50.49 72.82 79.03 26.126  42.643  58.151  61.437 

C4 31.61 56.49 79.84 86.41 30.579  49.686  67.549  71.597  

D1 37.38 67.91 96.83 104.93 36.019 58.648 79.846 84.502 

D2 39.61 70.88 100.25 108.51 38.301  62.244  84.633 89.693  

D3 42.27 74.28 104.05 112.49 41.080 66.597  90.394  95.975  

D4 46.52 79.30 109.49 118.13 45.585  73.568  99.561  106.07  

E1 49.57 90.04 128.39 139.12 47.757 77.760 105.87 112.04 

E2 52.51 93.98 132.92 143.87 50.783 82.529  112.21  118.92 

E3 56.05 98.48 137.96 149.14 54.467  88.295  119.85  127.25 

E4 61.68 105.14 145.17 156.63 60.440 97.542 132.01  140.63 
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Fig. 3 Mode shapes of the circular membrane vibrating in vacuum and with the added mass by Eq.(22) 
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3.3 Analysis of added mass of square membrane 

  Experimental investigation of the first natural frequency of a square membrane was performed by R. 

Sygulski (1994). Fig. 4 shows the dimensions of the model. In theoretical calculations, the membrane was 

discretized to the boundary elements. The membrane cover was in form of the cable net with mesh 10 × 10 

cm made of strand of 1.1 mm diameter, which was tensed by H = 68.67 N/m.  The mass of the cover was 

represented by concentrated masses in nodes. The thin elastic film was attached to the net. To eliminate 

the influence of the added mass of air on vibration, the film was removed at first. Then, the net covered 

with film was used to reflect the membrane-air interactive system. In both cases, the mass distributed on 

the unit of the cover area was constant, 0.3 kg/m2. The mass of the film was compensated by increasing the 

concentrated masses in nodes. The experimental result of the first natural frequency with film, or with air, 

was 5.88 Hz, and the result without air was 10.94 Hz. On the other hand, the result with the added mass 

estimated by Eq.(22) is 5.65Hz and that by Eq.(33) is 5.97Hz. Meanwhile, the first natural frequency in 

vacuum was estimated by FEM, and the result is 10.77 Hz. It can be found out that, in comparison with 

the experimental results in low mode, a good accuracy of the results obtained in numerical computation 

using two added mass models proposed in this paper can be achieved. As shown in Fig.5, there is little 

difference between the mode shapes vibrating in vacuum and the corresponding mode shapes with the 

added mass estimated by Eq.(22). 

 

Fig. 4  A square membrane model (R. Sygulski, 1994) 
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Fig. 5 Mode shapes of the square membrane vibrating in vacuum and with the added mass by Eq.(22) 

3.4 Analysis of added mass of three-sided membrane 

For the circular membrane and the square membrane, since the membrane mass is uniform, the mode 

shapes of the membrane vibrating in vacuum and with the added mass model estimated by Eq.(33) are 

fully identical. Hence, for the same vibration mode, the element of added mass is identical. Therefore, 

the determination of added mass using the added mass model by Eq.(33) is only based on the mode 

shape of the membrane vibrating in vacuum. However, when the mass distribution of the membrane is 

nonuniform, with the added mass model by Eq.(33) to calculate the added mass, the added mass 

determined by the effect of the mode shape will also influence the final mode shape of the membrane, 



and a iteration analysis is necessary.  

 In this case, the analysis procedures of the added mass according to mode shape are as follows: 

1) Calculate the natural frequencies and the mode shapes of the membrane vibrating in vacuum. 

2) Use Eq.(33) to calculate the added mass. 

3) For each vibration mode, calculate the natural frequencies and mode shapes of the membrane with 

the added mass estimated from Step 2. 

4) Compare the natural frequencies and mode shapes of the membrane with that in the previous step. If 

they are close enough, then end off the iteration; Otherwise, calculate the added mass of the each 

element again based on the current mode shapes, and then repeat steps 2 through 4.  

Sewall et al. (1983) investigated the vibration of a three-sided membrane both in vacuum and in still air, 

and tried to use as a surface reflective in space antennas. The membrane was designed as a three-sided 

membrane to obtain uniform prestress by tensioning the steel cables along the three-sided edges. The 

test set-up is shown in Fig. 5. The density of the membrane is 1384kg/m3 and the density of the steel 

cable is 5500kg/m3. Given the tension in the cable, the prestress in the membrane can be derived as: 

m/N rt   (34) 

where, N is the tension in the cable, r is the radius of the curvature of the membrane, and tm is the 

thickness of the membrane.  

Test results on the natural frequencies of the three-sided membrane vibrating in still air are listed in 

Table 5. Sewall et al. (1983) also proposed a distribution model of the added mass of the membrane, as 

shown in Fig. 6. The natural frequencies of the membrane considering the added mass distribution 

proposed by Sewall are also listed in Table 5. It can be seen that the error between the test results and the 

model by Sewall is large and increases as the vibration mode increases. Table 5 also presents the natural 

frequencies of the membrane vibrating in still air based on the added mass model by Eq.(22) and by 

Eq.(33), respectively. It can be seen that the results with the added mass estimated by Eq.(22) shows 

better agreement with the test results in the 1st mode. However, the error increases as the order of 

vibration mode increases. It also can be seen that the results with the added mass estimated by Eq.(33) 

are quite satisfactory after the last iteration, with errors less than 5%. In this case, the mass distribution 

of the structure is nonuniform due to the steel cables. Hence, the mode shape of the structure vibrating in 

still air will be different from that in vacuum. As shown in Figs. 8, 9 and 10, the mode shapes vibrating 

in vacuum are different from that with the added mass estimated by Eq.(22) and Eq.(33). From Fig. 9 

and Fig.10, it can be seen that the difference between the mode shapes of the three-sided membrane with 

the added mass estimated by Eq.(22) and that by Eq.(33) is little in the 1st, 2nd, 3rd, and 4th vibration 

modes, and a little larger in the 5th and 6th vibration modes. 

 

Fig. 6 Test setup for a three-sided membrane 



 

Fig. 7 The added mass distribution model proposed by Sewall 
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(a) 1st mode             (b) 2nd mode                (c) 3rd mode 
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 (d) 4th mode                  (e) 5th mode             (f) 6th mode 

Fig. 8 Mode shapes of the three-sided membrane vibrating in vacuum 
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 (d) 4th mode             (e) 5th mode            (f) 6th mode 

Fig. 9 Mode shapes of the three-sided membrane with the added mass by Eq.(33) after the last iteration 
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(d) 4th mode                     (e) 5th mode             (f) 6th mode 

Fig. 10 Mode shapes of the three-sided membrane with the added mass by Eq.(22) 

Table 5 Natural frequencies of the three-sided membrane vibrating in still air （N=51N） 

Mode Test 

(Hz) 

Model by Sewall 

(Hz) 

Model by Eq.(22) 

(Hz) 

Model by Eq.(33) 

(Hz) 

1 13.94 12.73 14.18 14.38 

2 26.34 23.09 24.35 28.63 

3 28.90 23.26 24.35 30.57 

4 34.77 27.36 29.75 35.73 

5 43.14 34.83 36.22 45.94 

6 43.85 34.92 36.22 46.21 

* N is the prestress level in the membrane. 

 

3.5 Conclusions 

In this project, the boundary element method was applied to estimate the added mass for open flat 

membranes vibrating in still air. Two added mass models were proposed and discussed, one only 

considering the effect of the membrane geometric shape, and the other considering the effect of the 

geometric shape and the mode shape of membranes. The main findings were:  
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1) Added mass of air has a significant influence on the natural frequency of membrane structures in 

vibrating. 

2) The proposed added mass model based on the effect of the geometric shape can have a good 

agreement with the test results in low-order modes, and the error will be increase as the order of 

vibration modes increases. 

3) This proposed added mass model based on the effect of the geometric shape and the mode shape can 

have a better conformity with the test results both in low-order modes and high-order modes.  

4) When the mass distribution of the membrane is uniform, the mode shapes of the membrane vibrating in 

vacuum as well as of the membrane with the added mass model according to geometric shape and 

mode shape are fully identical. There is little different between the mode shapes of the membrane with 

the added mass model according to geometric shape and the corresponding mode shapes of the 

membrane vibrating in vacuum. 

5) When the mass distribution of the membrane is non-uniform, the mode shape of the structure vibrating 

in air will be quite different from that in vacuum. An iteration analysis is necessary with added mass 

model based on the effect of the geometric shape and the mode shape. Generally, it will be converged 

with several iterations. The difference between the mode shapes of the membrane with the added mass 

model according to geometric shape and the corresponding mode shapes with the added mass model 

according to geometric shape and mode shape is little in low modes and is large in some high modes. 
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